Heavy-duty hydrogen fuel cell trucks a waste of energy and money
Preface. Hydrogen fuel cell trucks are incredibly inefficient. Turning hydrogen back into electricity with a fuel cell is only 24.7 % efficient (.84 * .67 * .54 * .84 * .97) as shown in figure 1. There are multiple stages where energy is lost due to inefficiencies at each step: Natural gas upstream and liquefaction, hydrogen on-board reforming, fuel cell efficiency, electric motor and drive-train losses, and aerodynamic/rolling resistance.
Since fuel cell electric trucks are terrible at acceleration, they always have a second propulsion system, usually a battery, making them orders of magnitude more expensive than an equivalent diesel truck, $1,300,000 versus $100,000 respectively.
Hydrogen is not a renewable, since 96% of hydrogen is made from natural gas using natural gas, but at least it can be made cheaply around the clock that way.
Hydrogen generated with solar power could only be made 10 to 25% of the time (the capacity factor) when the sun is up, and electrolysis of water is so expensive it is only made for applications that require extremely pure hydrogen, mainly NASA. The amount of space rebuildable contraptions like solar and wind take up is a problem as well. To use wind power to produce 700 Terrawatt hours of hydrogen would require wind turbines taking up 40,154 square miles (Ford 2020).
Hydrogen pipelines are too expensive to build at length, since they are corroded and embrittled by hydrogen. Yet delivery would require a $250,000 canister truck weighing 88,000 pounds (40,000 kg) delivering a paltry 880 (400 kg) of fuel, enough for 60 cars and just a few trucks. A diesel truck can carry 10,000 gallons of gas, enough to fill 800 cars. The hydrogen delivery truck cannibalize much of its energy: over a distance of 150 miles, it will burn the equivalent of 20% of the usable energy in the hydrogen it is delivering (Romm 2005).
…click on the above link to read the rest of the article…