Home » Posts tagged 'energy skeptic'

Tag Archives: energy skeptic

Olduvai
Click on image to purchase

Olduvai III: Catacylsm
Click on image to purchase

Post categories

Himalayan glaciers that supply water to a billion people are melting fast

Himalayan glaciers that supply water to a billion people are melting fast

Preface. The Himalayan glaciers that supply water to a billion people are melting fast, already 30% has been lost since 1975.

Adding to the crisis are the 400 dams under construction or planned for Himalayan rivers in India, Pakistan, Nepal, and Bhutan to generate electricity and for water storage.  The dams’ reservoirs and transmission lines will destroy biodiversity, thousands of houses, towns, villages, fields, 660 square miles of forests, and even parts of the highest highway of the world, the Karakoram highway. The dam projects are at risk of collapse from earthquakes in this seismically active region and of breach from flood bursts from glacial lakes upstream. Dams also threaten to intensify flooding downstream during intense downpours when reservoirs overflow (IR 2008, Amrith 2018).

Since the water flows to 16 nations, clearly these dams could cause turmoil and even war if river flows are cut off from downstream countries.  Three of these nations, India, Pakistan, and China, have nuclear weapons.

It’s already happening. After a terrorist attack that killed 40 Indian police officers in Kashmir, Indiadecided to retaliate by cutting off some river water that continues on to Pakistan, “adding an extra source of conflict between two nuclear-armed neighbors”. Pakistan is one of the most water-stressed countries in the world with seriously depleted underground aquifers and less storage behind their two largest dams due to silt (Johnson 2019).

***

Wu, K. 2019. Declassified spy images show Earth’s ‘Third Pole’ is melting fast.  Accelerating ice melt in the Himalayas may imperil up to a billion people in South Asia who rely on glacier runoff for drinking water and more. PBS.org

…click on the above link to read the rest of the article…

Global oil discoveries far from breaking even with consumption

Global oil discoveries far from breaking even with consumption

This image has an empty alt attribute; its file name is oil-discoveries-rystad-2013-2018.jpg

Preface.  According to Bloomberg (2016), oil discoveries in 2015 were the lowest since 1947, with just 2.7 billion barrels of conventional oil found globally (though Rystad calculated this differently at 5.6, nearly twice as much). Since the world burns 36.5 billion barrels of oil a year in 2019, we’re not even close to breaking even.

Rystad Energy (2019) in “Global discoveries on the rise as majors take a bigger bite” estimates barrels of oil equivalent, which includes both conventional oil and gas. Since oil is the master resource that makes gas, transportation, and all other goods and activities possible, I’ve taken the second number as the percent of oil in the BOE to come up with how much conventional oil was found. It falls way short of the 36.5 billion barrels we’re consuming. The pantry is emptying out, perhaps pushing the peak oil date forward in time as we continue to grow at 1% a year in oil consumption and put nothing at all back on the shelves.  Peak Demand? Ha!  Not until we’re forced to cut back from oil shortages.

2013 50:50 17.4 billion BOE  8.7 billion BOE oil  shortfall: 27.8 billion BOE
2014 54:46 16.0 billion BOE  7.4 billion BOE oil shortfall: 29.1 billion BOE
2015 61:39 14.4 billion BOE  5.6 billion BOE oil shortfall: 30.9 billion BOE
2016 57:43 8.4 billion BOE  3.6 billion BOE oil  shortfall: 32.9 billion BOE
2017 40:60 10.3 billion BOE 6.2 billion BOE oil shortfall: 30.3 billion BOE
2018 46:54 9.1 billion BOE 4.9 billion BOE oil  shortfall: 31.6 billion BOE

This doesn’t include fracked oil, but the IEA expects that to peak somewhere from now to 2023.

What it means is enjoy life while it’s still good, and stock your pantry while you’re at it.

***

Mikael, H. August 29, 2016. Oil Discoveries at 70-Year Low Signal Supply Shortfall Ahead. Bloomberg.

2016 figure only shows exploration results to August. Discoveries were just 230 million barrels in 1947 but skyrocketed the next year when Ghawar was discovered in Saudi Arabia, and is till the world's largest oil field.  Source: Wood Mackenzie
2016 figure only shows exploration results to August. Discoveries were just 230 million barrels in 1947 but skyrocketed the next year when Ghawar was discovered in Saudi Arabia, and it is still the world’s largest oil field, though recently it was learned that Ghawar is in decline at 3.5% a year. Source: Wood Mackenzie
…click on the above link to read the rest of the article…

How safe are utility-scale energy storage batteries?

How safe are utility-scale energy storage batteries?

Preface.  Airplanes can be forced to make an emergency landing if even a small external battery pack, like the kind used to charge cell phones, catches on fire (Mogg 2019).

If a small battery pack can force an airplane to land, imagine the conflagration of a utility scale storage battery might cause.

A lithium-ion battery designed to store just one day of U.S. electricity generation (11 TWh) to balance solar and wind power would be huge.  Using data from the Department of Energy (DOE/EPRI 2013) energy storage handbook, I calculated that the cost of a utility-scale lithium ion battery capable of storing 24 hours of electricity generation in the United States would cost $11.9 trillion dollars, take up 345 square miles, and weigh 74 million tons.

And at least 6 weeks of energy storage is needed to keep the grid up during times when there’s no sun or wind.  This storage has to come mainly from batteries, because there’s very few places to put Compressed Air Energy Storage (CAES), Pumped Hydro energy storage(PHS) (and also because it has a very low energy density), or Concentrated Solar Power with Thermal Energy Storage.  Currently natural gas is the main energy storage, always available to quickly step in when the wind dies and sun goes down, as well as provide power around the clock with help from coal, nuclear, and hydropower.

Storing large amounts of energy, whether it’s in larger rechargeable batteries, or smaller disposable batteries, can be inherently dangerous. The causes of lithium battery failure can include puncture, overcharge, overheating, short circuit, internal cell failure and manufacturing deficiencies.  Nearly all of the utility-scale batteries now on the grid or in development are massive versions the same lithium ion technology that powers cellphones and laptops.

This image has an empty alt attribute; its file name is 2MW-AZ-battery-that-exploded.jpg

…click on the above link to read the rest of the article…

Microbes a key factor in climate change

Microbes a key factor in climate change

Preface. The IPCC, like economists, assumes our economy and burning of fossil fuels will grow exponentially until 2100 and beyond, with no limits to growth. But conventional oil peaked and has stayed on a plateau since 2005, so clearly peak global oil production is in sight. As is peak soil, aquifer depletion, biodiversity destruction, and deforestation to name just a few existential threats besides climate change.

The lack of attention to microbes in the IPCC model further weakens their predictions about the trajectory of climate change. As this article notes, diatoms are our friends, they “perform 25–45% of total primary production in the oceans, owing to their prevalence in open-ocean regions when total phytoplankton biomass is maximal. Diatoms have relatively high sinking speeds compared with other phytoplankton groups, and they account for ~40% of particulate carbon export to depth”.

Diatoms didn’t appear until 40 million years ago, and sequester so much carbon that they caused the poles to form ice caps. So certainly scientists should study whether their numbers are decreasing or increasing. But also the IPCC needs to include diatoms and other microbes in their models. It’s a big deal that they haven’t, since microorganisms support the existence of all higher life forms.

* * *

University of New South Wales. 2019. Leaving microbes out of climate change conversation has major consequences, experts warn. Science Daily.

Original article: Cavicchioli, R., et al. 2019. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews Microbiology.

More than 30 microbiologists from 9 countries have issued a warning to humanity — they are calling for the world to stop ignoring an ‘unseen majority’ in Earth’s biodiversity and ecosystem when addressing climate change.

…click on the above link to read the rest of the article…

America loves the idea of family farms. That’s unfortunate. By Sarah Taber

America loves the idea of family farms. That’s unfortunate. By Sarah Taber

Preface. As declining fossil fuels force more and more people back into being farmers, eventually 75 to 90% of the population, it would be much better for this to happen with family farms than gigantic mega-farms with workers who are slaves in all but name. This essay offers an alternative, collaborative worker-owned farming that has already been proven to work.. 

* * *

Taber, S. 2019. America loves the idea of family farms. That’s unfortunate. nymag.com

Family farms are central to our nation’s identity. Most Americans, even those who have never been on a farm, have strong feelings about the idea of family farms — so much that they’re the one thing that all U.S. politicians agree on. Each election, candidates across the ideological spectrum roll out plans to save family farms — or give speeches about them, at least. From Little House on the Prairie to modern farmer’s markets, family farms are also the core of most Americans’ vision of what sustainable, just farming is supposed to look like.

But as someone who’s worked in agriculture for 20 years and researched the history of farming, I think we need to understand something: Family farming’s difficulties aren’t a modern problem born of modern agribusiness. It’s never worked very well. It’s simply precarious, and it always has been. Idealizing family farms burdens real farmers with overwhelming guilt and blame when farms go under. It’s crushing.

I wish we talked more openly about this. If we truly understood how rare it is for family farms to happen at all, never mind last multiple generations, I hope we could be less hard on ourselves. Deep down we all know that the razor-thin margins put families in impossible positions all the time, but we still treat it like it’s the ideal.

 …click on the above link to read the rest of the article…

Bodhi Paul Chefurka: Carrying capacity, overshoot and sustainability

Bodhi Paul Chefurka: Carrying capacity, overshoot and sustainability

***

Ever since the writing of Thomas Malthus in the early 1800s, and especially since Paul Ehrlich’s publication of “The Population Bomb”  in 1968, there has been a lot of learned skull-scratching over what the sustainable human population of Planet Earth might “really” be over the long haul.

This question is intrinsically tied to the issue of ecological overshoot so ably described by William R. Catton Jr. in his 1980 book “Overshoot:The Ecological Basis of Revolutionary Change”.  How much have we already pushed our population and consumption levels above the long-term carrying capacity of the planet?

In this article I outline my current thoughts on carrying capacity and overshoot, and present five estimates for the size of a sustainable human population.

Carrying Capacity

Carrying capacity” is a well-known ecological term that has an obvious and fairly intuitive meaning: “The maximum population size of a species that the environment can sustain indefinitely, given the food, habitat, water and other necessities available in the environment.” 

Unfortunately that definition becomes more nebulous and controversial the closer you look at it, especially when we are talking about the planetary carrying capacity for human beings. Ecologists will claim that our numbers have already well surpassed the planet’s carrying capacity, while others (notably economists and politicians…) claim we are nowhere near it yet!
 
This confusion may arise because we tend to confuse two very different understandings of the phrase “carrying capacity”.  For this discussion I will call these the “subjective” view and the “objective” views of carrying capacity.

The subjective view is carrying capacity as seen by a member of the species in question. Rather than coming from a rational, analytical assessment of the overall situation, it is an experiential judgement. 

 …click on the above link to read the rest of the article…

Peak Stainless Steel

Peak Stainless Steel

This study shows that there is a significant risk that stainless steel production will reach its maximum capacity around 2055 because of declining nickel production, though recycling, and use of other alloys on a very small scale can compensate somewhat.

The model in this study assumes business as usual for metal production and fossil fuel supplies (though the authors note that energy limitations are likely in the future, which will limit mining). If oil begins to decline within 10 years, as many think, shortages of stainless steel and everything else will happen before 2055.

There are two kinds of steel. Stainless which resists corrosion and is more ductile and tough than regular steel, also known as mild or carbon steel. 

By weight, stainless steel is the fourth largest metal produced, after carbon steel, cast iron, and aluminum. 

But stainless steel is limited by the alloying metals manganese (Mn), chromium (Cr) and nickel (Ni), which have limited reserves. 

There are over 150 grades of stainless steel which is used for cutlery, cookware, zippers, construction, autos, handrails, counters, shipping containers, medical instruments and equipment, transportation of chemicals, liquids, and food products, harsh environments with high heat and toxic substances, off-shore oil rigs, wind, solar, geothermal, hydropower, battleships, tanks, submarines, and too many other products to name.

***

Sverdrup, H. U., et al. 2019. Assessing the long-term global sustainability of the production and supply for stainless steel. Biophysical economics and resource quality.

The extractable amounts of nickel are modest, and this puts a limit on how much stainless steel of different qualities can be produced. Nickel is the most key element for stainless steel production. 

This study shows that there is a significant risk that the stainless steel production will reach its maximum capacity around 2055 and slowly decline after that. The model indicates that stainless steel of the type containing Mn–Cr–Ni will have a production peak in about 2040, and the production will decline after 2045 because of nickel supply limitations.  

 …click on the above link to read the rest of the article…

Many signs of peak oil and decline

Many signs of peak oil and decline

Preface.  Recently the IEA 2018 World Energy Outlook predicted an oil crunch could happen as soon as 2023.  Oil supermajors are expected to have 10 years of reserve life or more, Shell is down to just 8 years.

Political shortages are as big a problem as geological depletion. At least 90% of remaining global oil is in government hands, especially Saudi Arabia and other countries in the middle east that vulnerable to war, drought, and political instability.

And in 2018, the U.S. accounted for 98% of global oil production growth and since 2008, the U.S. accounted for 73.2% of the global increase in production (see Rapier below).   What really matters is peak diesel, which I explained in “When trucks stop running”, and fracked oil has very little diesel, much of it is only good for plastics, and yet America may well be the last gasp of the oil age if production isn’t going up elsewhere.

Related articles:

2019-6-10 World crude production outside US and Iraq is flat since 2005

***

Rapier, R. 2019. The U.S. accounted for 98% of global oil production growth in 2018. Forbes.

Earlier this month BP released its Statistical Review of World Energy 2019.   The U.S. extended its lead as the world’s top oil producer to a record 15.3 million BPD (my comment: minus 4.3 million BPD natural gas liquids, which really shouldn’t be included since they aren’t transportation fuels). In addition, the U.S. led all countries in increasing production over the previous year, with a gain of 2.18 million BPD (equal to 98% of the total of global additions),… which helped offset declines from Venezuela (-582,000 BPD), Iran (-308,000 BPD), Mexico (-156,000 BPD), Angola (-143,000 BPD), and Norway (-119,000 BPD).

Peak demand?  Hardly: “the world set a new oil production record of 94.7 million BPD, which is the ninth straight year global oil demand has increased.

Fickling, D. 2019. Sunset for Oil Is No Longer Just Talk. Bloomberg.

 …click on the above link to read the rest of the article…

Wood, the fuel of preindustrial societies, is half of EU renewable energy

Wood, the fuel of preindustrial societies, is half of EU renewable energy

Source: Ben Adler. Aug 25, 2014. Europe is burning our forests for “renewable” energy. 
Wait, what? grist.org

Preface: By far the largest so-called renewable fuel used in Europe is wood. In its various forms, from sticks to pellets to sawdust, wood (or to use its fashionable name, biomass) accounts for about half of Europe’s renewable-energy consumption.

Although Finland is the most heavily forested country in Europe, with 75% of their land covered in woods, they may not have enough biomass to replace coal when all coal plants are shut down by 2029.  Much of their land has no roads or navigable waterways, so imports would be cheaper than using their own forests (Karagiannopoulos 2019).

Vaclav Smil, in his 2013 book “Making the Modern World: Materials and Dematerialization” states: “Straw continues to be burned even in some affluent countries, most notably in Denmark where about 1.4 Mt of wheat straw (nearly a quarter of the total harvest) is used for house heating or even in centralized district heating and electricity generation.”

There are three articles about wood below. Some other wood energy reports:

2016:  Forests in southern states are disappearing to supply Europe with energy. In the past 60 years, the southern U.S. lost 33 million acres of forests even though biomass is not carbon neutral. Salon

2016: Japan is now turning to burning wood to generate electric power because of fewer nuclear power plants after Fukushima

***

1. The Economist. April 6, 2013. Wood: The fuel of the future. Environmental lunacy in Europe.

Which source of renewable energy is most important to the European Union? Solar power, perhaps? (Europe has three-quarters of the world’s total installed capacity of solar photovoltaic energy.) Or wind? (Germany trebled its wind-power capacity in the past decade.) The answer is neither.

By far the largest so-called renewable fuel used in Europe is wood.

 …click on the above link to read the rest of the article…

How much oil left in America? Not much

How much oil left in America? Not much

If you think no worries because we can get arctic oil, think again. We can’t because icebergs knock the drilling platforms down, and massive amounts of new infrastructure — roads, rail lines, platforms, buildings — are needed to set up drilling in Alaska, since the permafrost soil heaves and sinks like a bucking bronco trying to shake them off.

It’s kind of dumb to be in this situation. In the first two oil shocks in the 1970s, many intelligent people proposed we should buy oil from other nations to keep ours in the ground when foreign oil declined. But hell no, Texas, Oklahoma, and other oil states said we need jobs and huge fat profits for shareholders more than national security as long as possible. I would guess this makes war a likely outcome in the future, which wouldn’t have occurred if we’d kept our oil in the ground.

The source material for this post is: Jean Laherrère, Updated US primary energy in quad (April 30, 2019) https://aspofrance.files.wordpress.com/2019/04/updateduspe2019-3.pdf

***

Philippe Gauthier. May 3, 2019. US Oil Exploration Drops by 95 Percent. Resilience.org 

It is well known that oil discoveries are in continuous decline worldwide in spite of ever-increasing investments. What is less known, however, is that spending on oil exploration is fast dropping in the United States. Exploratory drilling has been decreasing year after year and now stands at only five percent of its 1981 peak. In other words, once the currently producing shale oil wells are gone, there won’t be much to take their place.

According to figures derived from US Energy Information Agency (EIA) data by French oil geologist Jean Laherrère, oil exploration has already peaked twice in the United States. The first time was in the mid-1950s, with just over 16,000 wells drilled in a single year. The second major peak dates back to 1981, with 17,573 exploration wells. This number fell to only 847 in 2017.

 …click on the above link to read the rest of the article…

One million plant & animal species at risk of extinction

One million plant & animal species at risk of extinction

As usual, no mention of birth control or carrying capacity. 

Plumer, B. 2019. Humans Are Speeding Extinction and Altering the Natural World at an ‘Unprecedented’ Pace. New York Times.

Extinction rates are tens to hundreds of times higher than they have been in the past 10 million years. 

Over the past 50 years, global biodiversity loss has primarily been driven by activities like the clearing of forests for farmland, the expansion of roads and cities, logging, hunting, overfishing, water pollution and the transport of invasive species around the globe. 

All told, three-quarters of the world’s land area has been significantly altered by people, the report found, and 85 percent of the world’s wetlands have vanished since the 18th century.

Humans are transforming Earth’s natural landscapes so dramatically that as many as one million plant and animal species are now at risk of extinction, posing a dire threat to ecosystems that people all over the world depend on for their survival, a sweeping new United Nations assessment has concluded.

The 1,500-page report, compiled by hundreds of international experts and based on thousands of scientific studies, is the most exhaustive look yet at the decline in biodiversity across the globe and the dangers that creates for human civilization.

Its conclusions are stark. In most major land habitats, from the savannas of Africa to the rain forests of South America, the average abundance of native plant and animal life has fallen by 20 percent or more, mainly over the past century. With the human population passing 7 billion, activities like farming, logging, poaching, fishing and mining are altering the natural world at a rate “unprecedented in human history.”

 …click on the above link to read the rest of the article…

The Coming Copper Peak

The Coming Copper Peak

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

 …click on the above link to read the rest of the article…

Climate change risks could cause an American “Fukushima”

Climate change risks could cause an American “Fukushima”

Preface. Nuclear power plants need a constant supply of electric power to pump cool water into a reactor’s core.

Ninety percent of them, 54 plants, have at least one flood risk exceeding their design.

If flooding stops the power supply long enough, as happened in Fukushima, the core can overheat, melting through its container, as well as the nearby spent nuclear fuel pools which unlike the core, are in the open air, releasing deadly levels of radiation.

*** Some excerpts from:

Flavelle, C., et al. 2019. U.S. Nuclear Power Plants Weren’t Built for Climate Change. Bloomberg.

The NRC directed the operators of the 60 or so working U.S. nuclear power plants to evaluate their current flood risk, using the latest weather modeling technology and accounting for the effects of climate change. Companies were told to compare those risks with what their plants, many almost 50 years old, were built to withstand, and, where there was a gap, to explain how they would close it.

That process has revealed a lot of gaps. But Gregory Jaczko, former chairman of the U.S. Nuclear Regulatory Commission (NRC) and others say that the commission’s new leadership, appointed by President Donald Trump, hasn’t done enough to require owners of nuclear power plants to take preventative measures—and that the risks are increasing as climate change worsens.

Ninety percent of plants, 54 of them, have at least one flood risk exceeding their design. Fifty-three weren’t built to withstand their current risk from intense precipitation; 25 didn’t account for current flood projections from streams and rivers; 19 weren’t designed for their expected maximum storm surge; 19 face three or more threats that they weren’t designed to handle.

 …click on the above link to read the rest of the article…

Going 100% renewable power means a lot of dirty mining

Going 100% renewable power means a lot of dirty mining

Preface. Everyone talks about oil spills, but what about the dirty mining that will have a huge polluting footprint on the earth, and potentially destroy the world’s largest sockeye salmon fishery among other side-effects? Renewables aren’t cleaner and greener than fossils, and require a hell of a lot of fossils to mine the ore, deliver it to a crusher, blast furnace, and fabrication, all accomplished with fossils. 

***

Sadasivam, N. 2019. Report: Going 100% renewable power means a lot of dirty mining. Grist.org

For more than a decade, indigenous communities in Alaska have been fighting to prevent the mining of copper and gold at Pebble Mine in Bristol Bay, home to the world’s largest sockeye salmon fishery and a crucial source of sustenance. The proposed mine, blocked under the Obama administration but inching forward under the Trump administration, has been billed by proponents as necessary to meet the growing demand for copper, which is used in wind turbines, batteries, and solar panels. Similar stories are playing out in Norway, where the Sámi community is fighting a copper mine, and in Papua New Guinea, where a company has been mining the seabed for gold and copper.

Weighing those trade-offs — between supporting mining in environmentally sensitive areas and sourcing metals needed to power renewables — is likely to become more common if countries continue generating more renewable energy. That’s according to a report out Wednesday from researchers at the Institute for Sustainable Futures at the University of Technology Sydney in Australia. The report, commissioned by the environmental organization Earthworks, finds that demand for metals such as copper, lithium and cobalt would skyrocket if countries around the world try to get their electric grids and transportation systems fully powered by renewable energy by 2050. Consequently, a rush to meet that demand could lead to more mining in countries with lax environmental and safety regulations and weak protections for workers.

 …click on the above link to read the rest of the article…

Why solar power can’t save us from the coming energy crisis

Why solar power can’t save us from the coming energy crisis

Preface. Embedded within the posts below are even more reasons why solar electricity can’t replace fossil fuels.  Meanwhile, all solar and wind do is add to the giant fire of burning fossil fuels and contribute a tiny bit more power, about 4% of all the power we use. But that will end at some point of the maximum grid integration level for a given area which is already happening in California (California hits the solar wall).

* * *

Solar power contraptions require oil for every single step of their life cycle. 

If solar power and concentrated solar power plants can’t produce enough power to replicate themselves entirely, plus produce the energy needed by society, then they are not sustainable.  Oil is used by mining trucks, ships to take the ore to facilities that use fossil fuels to crush the rock and permeate it with petro-chemicals to extract the metal from the ore.  Then the metal is taken by diesel truck to a smelter which can only run on a blast furnace running 24 x 7 x 365 for years to extract the metal for fabrication (these aren’t electric because even one outage would destroy the brick lining). Every single part uses fossil energy to make, and thousands of parts are shipped on diesel vehicles to the assembly factory.  And of course, in all of these steps, workers drive to work to do their jobs, including finally building roads, cement platforms, and electric transmission to connect the solar PV or Concentrated Solar plant to the existing electric grid. 

Wind and solar power require even more fossil fuels

Wind and Solar Power Require MORE Fossil Fuels

Solar is seasonal

 …click on the above link to read the rest of the article…

Olduvai IV: Courage
In progress...

Olduvai II: Exodus
Click on image to purchase