Home » Posts tagged 'energy skeptic'

Tag Archives: energy skeptic

Olduvai
Click on image to purchase

Olduvai III: Catacylsm
Click on image to purchase

Post categories

Wood, the fuel of preindustrial societies, is half of EU renewable energy

Wood, the fuel of preindustrial societies, is half of EU renewable energy

Source: Ben Adler. Aug 25, 2014. Europe is burning our forests for “renewable” energy. 
Wait, what? grist.org

Preface: By far the largest so-called renewable fuel used in Europe is wood. In its various forms, from sticks to pellets to sawdust, wood (or to use its fashionable name, biomass) accounts for about half of Europe’s renewable-energy consumption.

Although Finland is the most heavily forested country in Europe, with 75% of their land covered in woods, they may not have enough biomass to replace coal when all coal plants are shut down by 2029.  Much of their land has no roads or navigable waterways, so imports would be cheaper than using their own forests (Karagiannopoulos 2019).

Vaclav Smil, in his 2013 book “Making the Modern World: Materials and Dematerialization” states: “Straw continues to be burned even in some affluent countries, most notably in Denmark where about 1.4 Mt of wheat straw (nearly a quarter of the total harvest) is used for house heating or even in centralized district heating and electricity generation.”

There are three articles about wood below. Some other wood energy reports:

2016:  Forests in southern states are disappearing to supply Europe with energy. In the past 60 years, the southern U.S. lost 33 million acres of forests even though biomass is not carbon neutral. Salon

2016: Japan is now turning to burning wood to generate electric power because of fewer nuclear power plants after Fukushima

***

1. The Economist. April 6, 2013. Wood: The fuel of the future. Environmental lunacy in Europe.

Which source of renewable energy is most important to the European Union? Solar power, perhaps? (Europe has three-quarters of the world’s total installed capacity of solar photovoltaic energy.) Or wind? (Germany trebled its wind-power capacity in the past decade.) The answer is neither.

By far the largest so-called renewable fuel used in Europe is wood.

 …click on the above link to read the rest of the article…

How much oil left in America? Not much

How much oil left in America? Not much

If you think no worries because we can get arctic oil, think again. We can’t because icebergs knock the drilling platforms down, and massive amounts of new infrastructure — roads, rail lines, platforms, buildings — are needed to set up drilling in Alaska, since the permafrost soil heaves and sinks like a bucking bronco trying to shake them off.

It’s kind of dumb to be in this situation. In the first two oil shocks in the 1970s, many intelligent people proposed we should buy oil from other nations to keep ours in the ground when foreign oil declined. But hell no, Texas, Oklahoma, and other oil states said we need jobs and huge fat profits for shareholders more than national security as long as possible. I would guess this makes war a likely outcome in the future, which wouldn’t have occurred if we’d kept our oil in the ground.

The source material for this post is: Jean Laherrère, Updated US primary energy in quad (April 30, 2019) https://aspofrance.files.wordpress.com/2019/04/updateduspe2019-3.pdf

***

Philippe Gauthier. May 3, 2019. US Oil Exploration Drops by 95 Percent. Resilience.org 

It is well known that oil discoveries are in continuous decline worldwide in spite of ever-increasing investments. What is less known, however, is that spending on oil exploration is fast dropping in the United States. Exploratory drilling has been decreasing year after year and now stands at only five percent of its 1981 peak. In other words, once the currently producing shale oil wells are gone, there won’t be much to take their place.

According to figures derived from US Energy Information Agency (EIA) data by French oil geologist Jean Laherrère, oil exploration has already peaked twice in the United States. The first time was in the mid-1950s, with just over 16,000 wells drilled in a single year. The second major peak dates back to 1981, with 17,573 exploration wells. This number fell to only 847 in 2017.

 …click on the above link to read the rest of the article…

One million plant & animal species at risk of extinction

One million plant & animal species at risk of extinction

As usual, no mention of birth control or carrying capacity. 

Plumer, B. 2019. Humans Are Speeding Extinction and Altering the Natural World at an ‘Unprecedented’ Pace. New York Times.

Extinction rates are tens to hundreds of times higher than they have been in the past 10 million years. 

Over the past 50 years, global biodiversity loss has primarily been driven by activities like the clearing of forests for farmland, the expansion of roads and cities, logging, hunting, overfishing, water pollution and the transport of invasive species around the globe. 

All told, three-quarters of the world’s land area has been significantly altered by people, the report found, and 85 percent of the world’s wetlands have vanished since the 18th century.

Humans are transforming Earth’s natural landscapes so dramatically that as many as one million plant and animal species are now at risk of extinction, posing a dire threat to ecosystems that people all over the world depend on for their survival, a sweeping new United Nations assessment has concluded.

The 1,500-page report, compiled by hundreds of international experts and based on thousands of scientific studies, is the most exhaustive look yet at the decline in biodiversity across the globe and the dangers that creates for human civilization.

Its conclusions are stark. In most major land habitats, from the savannas of Africa to the rain forests of South America, the average abundance of native plant and animal life has fallen by 20 percent or more, mainly over the past century. With the human population passing 7 billion, activities like farming, logging, poaching, fishing and mining are altering the natural world at a rate “unprecedented in human history.”

 …click on the above link to read the rest of the article…

The Coming Copper Peak

The Coming Copper Peak

Elon Musk told a closed-door Washington conference of miners, regulators and lawmakers that he sees a shortage of EV minerals coming, including copper and nickel (Scheyder 2019).   Other rare metals used in cars include neodymium, lanthanum, terbium, and dysprosium (Gorman 2009).

***

Richard A. Kerr. February 14, 2014. The Coming Copper Peak.  Science 343:722-724.

Production of the vital metal will top out and decline within decades, according to a new model that may hold lessons for other resources.

If you take social unrest and environmental factors into account, the peak could be as early as the 2020s

As a crude way of taking account of social and environmental constraints on production, Northey and colleagues reduced the amount of copper available for extraction in their model by 50%. Then the peak that came in the late 2030s falls to the early 2020s, just a decade away.

After peak Copper

Whenever it comes, the copper peak will bring change.  Graedel and his Yale colleagues reported in a paper published on 2 December 2013 in the Proceedings of the National Academy of Sciences that copper is one of four metals—chromium, manganese, and lead being the others—for which “no good substitutes are presently available for their major uses.”

If electrons are the lifeblood of a modern economy, copper makes up its blood vessels. In cables, wires, and contacts, copper is at the core of the electrical distribution system, from power stations to the internet. A small car has 20 kilograms (44 lbs) of copper in everything from its starter motor to the radiator; hybrid cars have twice that. But even in the face of exponentially rising consumption—reaching 17 million metric tons in 2012—miners have for 10,000 years met the world’s demand for copper.

 …click on the above link to read the rest of the article…

Climate change risks could cause an American “Fukushima”

Climate change risks could cause an American “Fukushima”

Preface. Nuclear power plants need a constant supply of electric power to pump cool water into a reactor’s core.

Ninety percent of them, 54 plants, have at least one flood risk exceeding their design.

If flooding stops the power supply long enough, as happened in Fukushima, the core can overheat, melting through its container, as well as the nearby spent nuclear fuel pools which unlike the core, are in the open air, releasing deadly levels of radiation.

*** Some excerpts from:

Flavelle, C., et al. 2019. U.S. Nuclear Power Plants Weren’t Built for Climate Change. Bloomberg.

The NRC directed the operators of the 60 or so working U.S. nuclear power plants to evaluate their current flood risk, using the latest weather modeling technology and accounting for the effects of climate change. Companies were told to compare those risks with what their plants, many almost 50 years old, were built to withstand, and, where there was a gap, to explain how they would close it.

That process has revealed a lot of gaps. But Gregory Jaczko, former chairman of the U.S. Nuclear Regulatory Commission (NRC) and others say that the commission’s new leadership, appointed by President Donald Trump, hasn’t done enough to require owners of nuclear power plants to take preventative measures—and that the risks are increasing as climate change worsens.

Ninety percent of plants, 54 of them, have at least one flood risk exceeding their design. Fifty-three weren’t built to withstand their current risk from intense precipitation; 25 didn’t account for current flood projections from streams and rivers; 19 weren’t designed for their expected maximum storm surge; 19 face three or more threats that they weren’t designed to handle.

 …click on the above link to read the rest of the article…

Going 100% renewable power means a lot of dirty mining

Going 100% renewable power means a lot of dirty mining

Preface. Everyone talks about oil spills, but what about the dirty mining that will have a huge polluting footprint on the earth, and potentially destroy the world’s largest sockeye salmon fishery among other side-effects? Renewables aren’t cleaner and greener than fossils, and require a hell of a lot of fossils to mine the ore, deliver it to a crusher, blast furnace, and fabrication, all accomplished with fossils. 

***

Sadasivam, N. 2019. Report: Going 100% renewable power means a lot of dirty mining. Grist.org

For more than a decade, indigenous communities in Alaska have been fighting to prevent the mining of copper and gold at Pebble Mine in Bristol Bay, home to the world’s largest sockeye salmon fishery and a crucial source of sustenance. The proposed mine, blocked under the Obama administration but inching forward under the Trump administration, has been billed by proponents as necessary to meet the growing demand for copper, which is used in wind turbines, batteries, and solar panels. Similar stories are playing out in Norway, where the Sámi community is fighting a copper mine, and in Papua New Guinea, where a company has been mining the seabed for gold and copper.

Weighing those trade-offs — between supporting mining in environmentally sensitive areas and sourcing metals needed to power renewables — is likely to become more common if countries continue generating more renewable energy. That’s according to a report out Wednesday from researchers at the Institute for Sustainable Futures at the University of Technology Sydney in Australia. The report, commissioned by the environmental organization Earthworks, finds that demand for metals such as copper, lithium and cobalt would skyrocket if countries around the world try to get their electric grids and transportation systems fully powered by renewable energy by 2050. Consequently, a rush to meet that demand could lead to more mining in countries with lax environmental and safety regulations and weak protections for workers.

 …click on the above link to read the rest of the article…

Why solar power can’t save us from the coming energy crisis

Why solar power can’t save us from the coming energy crisis

Preface. Embedded within the posts below are even more reasons why solar electricity can’t replace fossil fuels.  Meanwhile, all solar and wind do is add to the giant fire of burning fossil fuels and contribute a tiny bit more power, about 4% of all the power we use. But that will end at some point of the maximum grid integration level for a given area which is already happening in California (California hits the solar wall).

* * *

Solar power contraptions require oil for every single step of their life cycle. 

If solar power and concentrated solar power plants can’t produce enough power to replicate themselves entirely, plus produce the energy needed by society, then they are not sustainable.  Oil is used by mining trucks, ships to take the ore to facilities that use fossil fuels to crush the rock and permeate it with petro-chemicals to extract the metal from the ore.  Then the metal is taken by diesel truck to a smelter which can only run on a blast furnace running 24 x 7 x 365 for years to extract the metal for fabrication (these aren’t electric because even one outage would destroy the brick lining). Every single part uses fossil energy to make, and thousands of parts are shipped on diesel vehicles to the assembly factory.  And of course, in all of these steps, workers drive to work to do their jobs, including finally building roads, cement platforms, and electric transmission to connect the solar PV or Concentrated Solar plant to the existing electric grid. 

Wind and solar power require even more fossil fuels

Wind and Solar Power Require MORE Fossil Fuels

Solar is seasonal

 …click on the above link to read the rest of the article…

Groundwater rise. Yet another climate change threat.

Groundwater rise. Yet another climate change threat.


A graphic showing how sea level rise lifts freshwater, causing groundwater inundation in low-lying areas. Credit: UHM Coastal Geology Group

Preface. In coastal areas flooding is likely to be caused from groundwater rise because as sea levels rise, they won’t only move inland, flooding low-lying land near the shore; but also push water up from the saltwater water table, on top of which is a layer of lighter fresh water. As the salt water rises with rising seas, it will push this fresh water upward. In low-lying areas, that water may emerge from the ground. 

The consequences are that water will leach inside homes through basement cracks. Toilets may become chronically backed up. Raw sewage may seep through manholes. Brackish water will corrode sewer and water pipes and inundate building foundations. And most hazardous of all, water percolating upward may flow through contaminants buried in the soil, spreading them underground and eventually releasing them into people’s homes. The coup de grace will be the earthquakes, which, when they strike, may liquefy the entire toxic mess, pushing it toward the surface. 

The result will be that in places like Oakland, flooding will occur not just at the shoreline, but inland in areas once considered safe from sea level rise. The threat it poses can’t be neutralized with the usual strategy: physical structures that keep the sea at bay. No matter how many seawalls we build, many experts say, groundwater can still gurgle up from below, potentially turning large swaths of the densely populated shoreline around the Bay into unwanted, unplanned, possibly toxic wetlands. 

***

Grace Mitchell Tada. March 25, 2019. The Sea Beneath Us Sea level rise has a gotcha-from- behind twin: rising groundwater. It’s already here. And some experts maintain, we’re not ready for it. Bay Nature

 …click on the above link to read the rest of the article…

Hydropower can’t help with the energy crisis

Hydropower can’t help with the energy crisis

Preface. When fossil fuels are gone, there aren’t many ways to balance the unreliable, intermittent, and often absent for weeks at a time power from wind and solar.  Biofuels and burning biomass is one solution, it’s dispatchable and can kick in at any time to make up for lack of wind and solar, but using biomass as a power source is one of the most destructive ways to generate power as I explain in “Peak Soil” and probably has a negative return on energy invested.

So Plan B for renewable power would have to be hydropower.  That was the main proposal Stanford professor Mark Jacobson had to keep the electric grid stable and up and running.  But in 2017, a group of scientists pointed out that Jacobson’s proposal rested upon the assumption that we can increase the amount of power from U.S. hydroelectric dams 10-fold when, according to the Department of Energy and all major studies, the real potential is just 1% percent of that.  And since dams are so ecologically destructive, there would be a great deal of opposition to even building 1% of the dams Jacobson proposed.

Plus, most states don’t have hydropower. Ten states have 80% of hydropower, with Washington state a whopping 25% of hydro-electricity.

Hydropower isn’t always available.  A lot of water has to be held back to provide agriculture and cities with water, so there will be many times of the year when it can’t be released to keep the electric grid up.

And hydropower isn’t renewable, dams have a lifespan of 50 to 200 years.

Without all that additional hydroelectricity, the 100% renewables proposal falls apart. There is no Plan C because of all the shortcomings of battery technologies.

 …click on the above link to read the rest of the article…

45 Reasons why wind power can not replace fossil fuels

45 Reasons why wind power can not replace fossil fuels

Source: Leonard, T. 2012. Broken down and rusting, is this the future of Britain’s ‘wind rush’? https://www.dailymail.co.uk/news/article-2116877/Is-future-Britains-wind-rush.html

Preface. Electricity simply doesn’t substitute for all the uses of fossil fuels, so windmills will never be able to reproduce themselves from the energy they generate — they are simply not sustainable.  Consider the life cycle of a wind turbine – giant diesel powered mining trucks and machines dig deep into the earth for iron ore, fossil-fueled ships take the ore to a facility that will use fossil fuels to crush it and permeate it with toxic petro-chemicals to extract the metal from the ore. Then the metal will be taken in a diesel truck or locomotive to a smelter which runs exclusively on fossil fuels 24 x 7 x 365 for up to 22 years (any stoppage causes the lining to shatter so intermittent electricity won’t do). There are over 8,000 parts to a wind turbine which are delivered over global supply chains via petroleum-fueled ships, rail, air, and trucks to the assembly factory. Finally diesel cement trucks arrive at the wind turbine site to pour many tons of concrete and other diesel trucks carry segments of the wind turbine to the site and workers who drove gas or diesel vehicles to the site assemble it.

Here are the topics covered below in this long post:

  1. Windmills require petroleum every single step of their life cycle. If they can’t replicate themselves using wind turbine generated electricity, they are not sustainable
  2. SCALE. Too many windmills needed to replace fossil fuels
  3. SCALE. Wind turbines can’t be scaled up fast enough to replace fossils
  4. Not enough rare earth metals and enormous amounts of cement, steel, and other materials required
  5. Not enough dispatchable power to balance wind intermittency and unreliability
  6. Wind blows seasonally, so for much of there year there wouldn’t be enough wind

 …click on the above link to read the rest of the article…

Utility scale energy storage has a long way to go to make renewables possible

Utility scale energy storage has a long way to go to make renewables possible

What follows comes from my book  When Trucks Stop Running: Energy and the Future of Transportation , which is also where you’ll find the references backing up what I’ve written below. 

I often get letters from people about energy breakthroughs in biofuels, solar, electric trucks, and so on. This post is about the “record breaking amount of battery storage add in 2018” (go here to read the article). 

To enhance your own evaluation of the constant barrage of happy news in the media, here’s why I didn’t get excited or cheered up and go back to thinking the future was bound to be bright and shiny.

First, let’s go over the four possible ways to store electrical energy. We don’t need to store much now, because we still have natural gas, which kicks in to balance solar and wind power (but not coal and nuclear, which are damaged by trying to do this), and for much of the year provides 66% of electricity generation (along with coal), because wind and solar are so seasonal.

So if the grid is to be 100% renewable someday, which it has to be since the 66% of power coming from fossil fuels now to generate electricity is finite, then utility scale energy storage is essential Let’s look at what it would take each of the four methods to store just one day of U.S. electricity generation, 11.12 Terawatt Hours (TwH). 

The only commercial way to store electricity is pumped hydro storage (PHS), which can store 2% of America’s electricity generation today. But we’ve run out of places to put new dams. Only two have been built since 1995. There are only 43 PHS dams now, and we’d need 7800 more to store one day of U.S. electricity.

 …click on the above link to read the rest of the article…

Concrete: the most destructive material on Earth

Concrete: the most destructive material on Earth

Preface. Some of the points I found most alarming or interesting:

  • After water, concrete is the most widely used substance on Earth. 
  • Concrete is a thirsty behemoth, sucking up almost a 10th of the world’s industrial water use. This often strains supplies for drinking and irrigation
  • If the cement industry were a country, it would be the third largest CO2 emitter, accounting for 4 to 8% of the world’s CO2
  • Puts roofs over the heads of billions, fortifies defenses against natural disasters, and the structure for healthcare, education, transport, energy and industry. When combined with steel, it is the material that ensures our dams don’t burst, our tower blocks don’t fall, our roads don’t buckle and our electricity grid remains connected.
  • But they also entomb vast tracts of fertile soil, constipate rivers, & choke habitats
  • we may have already passed the point where concrete outweighs the combined carbon mass of every tree, bush and shrub on the planet. 
  • All the plastic produced over the past 60 years amounts to 8bn tonnes. The concrete industry pumps out more than that every two years.
  • The amount of concrete laid per square meter in Japan is 30 times the amount in America (the same as California using as much concrete as the entire U.S.)
  • Many engineers argue that there is no viable alternative. Steel, asphalt and plasterboard are more energy intensive than concrete. The world’s forests are already being depleted at an alarming rate

Watts, J. 2019-2-25. Concrete: the most destructive material on Earth. The Guardian.

After water, concrete is the most widely used substance on the planet. But its benefits mask enormous dangers to the planet, to human health – and to culture itself

Part 2. How long do civilizations last on average? 336 years

Part 2. How long do civilizations last on average? 336 years

I stopped trying to find out why each civilization failed in Wiki because it’s not always clear and historians bicker over it, though it’s clear drought, invasions, civil wars, and famines played a role in most of them.  Yet what’s seldom mentioned is that deforestation (Perlin “A forest journey”) and topsoil erosion (Montgomery “Dirt: the erosion of civilization”) were often the main or one of the key reasons for collapse. 

But what’s clear is that societies always collapse, and our civilization will fail as well, since it depends on a one-time only supply of fossil fuels.

Kemp, L. 2019. Are we on the road to civilization collapse? Studying the demise of historic civilisations can tell us how much risk we face today says collapse expert Luke Kemp. Worryingly, the signs are worsening. BBC

In the graphic below, I have compared the lifespan of various civilizations, which I define as a society with agriculture, multiple cities, military dominance in its geographical region and a continuous political structure. Given this definition, all empires are civilizations, but not all civilizations are empires.

Civilization [Duration in years]

  1. Ancient Egypt, Old Kingdom [505]  The power of pharaoh gradually weakened in favor of powerful nomarchs (regional governors)…. The country slipped into civil wars mere decades after the close of Pepi II’s reign.  The final blow was the 22nd century BC drought in the region that resulted in a drastic drop in precipitation. For at least some years between 2200 and 2150 BC, this prevented the normal flooding of the Nile. The collapse of the Old Kingdom was followed by decades of famine and strife.
  • Ancient Egypt, Middle Kingdom [405]   
  • Ancient Egypt, New Kingdom [501]  Egypt was increasingly beset by droughts, below-normal flooding of the Nilefamine, civil unrest and official corruption

 …click on the above link to read the rest of the article…

Using manure for fertilizer in the future – it won’t be easy

Using manure for fertilizer in the future – it won’t be easy

Animals produce 44 times more manure than humans in the U.S.

Preface. At John Jeavons Biointensive workshop back in 2003, I learned that phosphorous is limited and mostly being lost to oceans and other waterways after exiting sewage treatment plants.  He said it can be dangerous to use human manure without proper handling, and wasn’t going to cover this at the workshop, but to keep it in mind for the future.

Modern fertilizers made with the Nobel-prizing winning method of using natural gas as feedstock and energy source can increase crop production up to 5 times, but at a tremendous cost of poor soil health and pollution (see Peak soil).  Fossil fuels will inevitably decline some day, and force us back to organic agriculture and using crop wastes, animal and human manure again.

Below are excerpts from three sources.

The first is about North Korea. Despite tremendous efforts to use all manure, this country is a barren, destroyed landscape that can grow little food, which McKenna describes here: Inside North Korea’s Environmental Collapse.

The second section describes what it was like to live over a century ago when human and animal manure was routinely collected.

The third Below is a NewScientist book review of The Wastewater Gardener: Preserving the planet, one flush at a time by Mark Nelson.

Park, Y. 2015. In order to live: A North Korean girl’s journey to freedom. Penguin.

“One of the big problems in North Korea was a fertilizer shortage. When the economy collapsed in the 1990s, the Soviet Union stopped sending fertilizer to us and our own factories stopped producing it. Whatever was donated from other countries couldn’t get to the farms because the transportation system had also broken down. this led to crop failures that made the famine even worse.

 …click on the above link to read the rest of the article…

Hydropower dams and the ways they destroy the environment

Hydropower dams and the ways they destroy the environment

Preface. Hydropower comprises 71% of renewable energy worldwide.  Nations like the U.S. and Europe have dams that have reached the end of their lifespan, so more are being torn down than built. In the U.S. 546 dams were removed between 2006 and 2014.

This contains excerpts and paraphrasing of three news stories

  1. 11 Jan 2019 the costs of environmental damage and dam removal need to be added into calculations for whether to build a dam or not
  2. 19 November 2014 NewScientist article by Peter Hadfield “River of the dammed“,about the Chinese Three Gorges project
  3. 2012: the greenhouse gas emissions of hydropower

***

Moran, E. F. et al. 2018. Sustainable hydropower in the 21st century, Proceedings of the National Academy of Sciences.

Before developing countries build more dams, they need to take the following into account when estimating the cost

  • Deforestation
  • Loss of biodiversity, especially fish species
  • Social consequences, such as the displacement of thousands of people and the financial harm done
  • That climate change, especially drought, and evaporation from higher temperatures, which will lead to less water stored for agriculture and electricity
  • The cost of removing a dam is extremely high, so high dams wouldn’t be built if this cost were included.  Many new dams in Brazil and other nations will have a short lifespan — just 30 to 50 years

Hadfield, P. 2014.  “River of the dammed“. NewScientist.

Dams typically last 60 to 100 years, but whether Three Gorges can last this long is questionable given the unexpectedly high amounts of silt building up. Since fossil fuels are finite, as is uranium, to keep the electric grid up many see building more dams for hydropower as absolutely essential. Hydropower is also one of the few energy resources that can balance variable wind and solar as well.

 …click on the above link to read the rest of the article…

Olduvai IV: Courage
In progress...

Olduvai II: Exodus
Click on image to purchase