Is a key ingredient humans need to live about to run short?
Phosphorus is essential for all living organisms. So, it’s not surprising that humans get their phosphorus from other living organisms, mostly plants, that have absorbed phosphorus from the soil.
The introduction of phosphate fertilizers made it possible to ensure that enough phosphorus for healthy plant growth is available in practically any farmland soils. At first, farmers had access to phosphate fertilizers from bone ash and later from phosphate deposits accumulated from bird and bat guano on certain tropical islands (some of which deposits were 30 feet deep before they were mined and completely exhausted). More recently, phosphates have come from mining rocks rich in phosphorus.
All seemed well for the long term as supplies of the rock phosphates were thought to be hundreds of years at current rates of consumption. But a group of researchers upended the consensus in 2009 forecasting that phosphate production could peak as early as 2030. A peak wouldn’t be the end of phosphate production. But it would mark the beginning of an ongoing decline in phosphorus available from mines. This would come as a shock to a world food system accustomed to consistently rising phosphorus supplies needed to feed a growing population.
There are ways to recycle the phosphorus we eat, primarily through the sewage sludge from municipal sewage systems. But one of the easiest and most beneficial ways is building soil using compost. Crop residue, animal manure and human food wastes are important sources for such compost. It’s an old idea that is finding it’s way back into our modern agriculture.
In fact, one of the most important factors in the availability of phosphorus in any soil is the healthy presence of vast colonies of microorganisms that free phosphorus from its inorganic chemical prisons and make it available to organic life. Compost is an excellent way to build such a microbiotic community.
…click on the above link to read the rest of the article…