Many people believe that installing more wind turbines and solar panels and manufacturing more electric vehicles can solve our energy problem, but I don’t agree with them. These devices, plus the batteries, charging stations, transmission lines and many other structures necessary to make them work represent a high level of complexity.
A relatively low level of complexity, such as the complexity embodied in a new hydroelectric dam, can sometimes be used to solve energy problems, but we cannot expect ever-higher levels of complexity to always be achievable.
According to the anthropologist Joseph Tainter, in his well-known book, The Collapse of Complex Societies, there are diminishing returns to added complexity. In other words, the most beneficial innovations tend to be found first. Later innovations tend to be less helpful. Eventually the energy cost of added complexity becomes too high, relative to the benefit provided.
In this post, I will discuss complexity further. I will also present evidence that the world economy may already have hit complexity limits. Furthermore, the popular measure, “Energy Return on Energy Investment” (EROEI) pertains to direct use of energy, rather than energy embodied in added complexity. As a result, EROEI indications tend to suggest that innovations such as wind turbines, solar panels and EVs are more helpful than they really are. Other measures similar to EROEI make a similar mistake.
[1] In this video with Nate Hagens, Joseph Tainter explains how energy and complexity tend to grow simultaneously, in what Tainter calls the Energy-Complexity Spiral.
According to Tainter, energy and complexity build on each other. At first, growing complexity can be helpful to a growing economy by encouraging the uptake of available energy products…
…click on the above link to read the rest…