“Biophysical Economics and Resource Quality”
…click on the above link to read the rest of the article…
News and views on the coming collapse
Home » Posts tagged 'photovoltaic energy'
Preface. I once yanked this paper after huge blow back, but in the past few years, I have no reason to doubt Ferroni and Hopkirks methods, boundaries, or conclusions, so I’m putting this post back.
An ERoEI of less than 1 means there is a net energy loss. In this paper Ferroni and Hopkirk found the EROEI of Solar PV to be negative, just .82 (+/-) 15%) in countries north of the Swiss Alps.
The problem with EROEI is that there is endless arguing over the boundaries. For example, Prieto and Hall’s 2013 book, “Spain’s Photovoltaic Revolution-The Energy Return on Investment” had energy data for over 20 activities outside the production process of the modules, typically NOT included in EROEI studies. But these steps are necessary, or the solar PV installation won’t happen, and Pablo Prieto built several large installations and was in charge of the finances, so he knew everything required — the road built to access the site, the new transmission lines, the security fence and system and more that EROI studies typically don’t include.
This paper goes beyond Prieto and Hall’s boundaries because it includes labor, the costs of the energy required to integrate and buffer intermittent PV-electricity in the grid (i.e. storage via pumped hydro, batteries, natural gas or coal backup plants), and the energy embodied in faulty equipment. If Prieto & Hall had included these then their paper would have found a negative EROI, as Prieto wrote here. Though Prieto and Hall’s EROI of 2.6 : 1 in sunny Spain is still far less than the EROI of 10 to 14 many scientists believe necessary to maintain our current civilization.
Another important finding of this paper is that based on recycling rates of PV in Germany, solar panel lifespan is closer to 17 or 18 years than 25. And that doesn’t count the solar panels that are abandoned or tossed in the trash…
…click on the above link to read the rest of the article…
Because of the idiosyncrasies of how EROEI works, different researchers using EROEI analyses come to very different conclusions. This issue has recently come up in two different solar PV analyses. One author used EROEI analysis to justify scaling up of solar PV. Another author published an article in Nature Communications that claims, “A break-even between the cumulative disadvantages and benefits of photovoltaics, for both energy use and greenhouse gas emissions, occurs between 1997 and 2018, depending on photovoltaic performance and model uncertainties.”
Other EROEI researchers with whom I correspond don’t agree with these conclusions. They recognize that in complex situations, EROEI analyses cannot cover everything. Somehow, the user needs to be informed enough to realize that these omissions result in biases. Researchers need to work around these biases when coming to conclusions. They themselves do it (or try to); why can’t everyone else?
The underlying problem with EROEI calculations is that EROEI is based on a very simple model. The model works passably well in simple situations, but it was not designed to handle the complexities of intermittent renewables, such as wind and solar PV. Indirect costs, and costs that are hard to measure, tend to get left out.
…click on the above link to read the rest of the article…
We recognize that subsequent studies to ours would probably have generated higher EROIs because of using panels of lower energy costs or higher efficiency. But there are many ways that it might be lower too. For example Ferroni and Hopkirk, who (despite, perhaps, some issues) have done us a good service by attempting to get actual lifetimes for modules, which were much closer to 18 years than infinity. This agrees with what happened in Spain when, due to post-2008 financial turmoil, manufacturers did not honor their guarantees and legally “disappeared”, leaving broken systems unfixed. (And what happened to all those “surplus” Chinese panels that were never used?
…click on the above link to read the rest of the article…