In a dramatic scientific and engineering breakthrough, researchers at the Bay Area’s Lawrence Livermore National Lab recently achieved the long-sought goal of generating a nuclear fusion reaction that produced more energy than was directly injected into a tiny reactor vessel. By the very next day, pundits well across the political spectrum were touting that breakthrough as a harbinger of a new era in energy production, suggesting that a future of limitless, low-impact fusion energy was perhaps a few decades away. In reality, however, commercially viable nuclear fusion is only infinitesimally closer than it was back in the 1980s when a contained fusion reaction – i.e. not occurring in the sun or from a bomb – was first achieved.
While most honest writers have at least acknowledged the obstacles to commercially-scaled fusion, they typically still underestimate them – as much so today as back in the 1980s. We are told that a fusion reaction would have to occur “many times a second” to produce usable amounts of energy. But the blast of energy from the LLNL fusion reactor actually only lasted one tenth of a nanosecond – that’s a ten-billionth of a second. Apparently other fusion reactions (with a net energy loss) have operated for a few nanoseconds, but reproducing this reaction over a billion times every second is far beyond what researchers are even contemplating.
We are told that the reactor produced about 1.5 times the amount of energy that was input, but this only counts the laser energy that actually struck the reactor vessel. That energy, which is necessary to generate temperatures over a hundred million degrees, was the product of an array of 192 high-powered lasers, which required well over 100 times as much energy to operate…
…click on the above link to read the rest…