Abstract
Achieving the Paris Agreement will require massive deployment of low-carbon energy. However, constructing, operating, and maintaining a low-carbon energy system will itself require energy, with much of it derived from fossil fuels. This raises the concern that the transition may consume much of the energy available to society, and be a source of considerable emissions. Here we calculate the energy requirements and emissions associated with the global energy system in fourteen mitigation pathways compatible with 1.5 °C of warming. We find that the initial push for a transition is likely to cause a 10–34% decline in net energy available to society. Moreover, we find that the carbon emissions associated with the transition to a low-carbon energy system are substantial, ranging from 70 to 395 GtCO2 (with a cross-scenario average of 195 GtCO2). The share of carbon emissions for the energy system will increase from 10% today to 27% in 2050, and in some cases may take up all remaining emissions available to society under 1.5 °C pathways.
Introduction
The IPCC’s Special Report on Global Warming of 1.5 °C concludes that we can still meet the 1.5 °C target and that by doing so, we would reduce climate impacts and limit the risk of exceeding the tipping points of the climate system1. The report provides a range of low-carbon energy pathways compatible with limiting global warming to 1.5 °C. However, at present, there is no estimate of how much energy would be needed to build and maintain a low-carbon energy system, or what amount of greenhouse gas emissions would be associated with such a transition2,3,4. This is an important gap in knowledge, as previous research suggests that rapid growth of low-carbon infrastructure could use a substantial amount of the global energy supply5,6. Moreover, since the global energy supply is currently derived mostly from fossil fuels, the transition itself may become a source of significant emissions7,8.
…click on the above link to read the rest…